首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   958篇
  免费   88篇
  2024年   1篇
  2023年   11篇
  2022年   11篇
  2021年   45篇
  2020年   22篇
  2019年   23篇
  2018年   38篇
  2017年   25篇
  2016年   40篇
  2015年   59篇
  2014年   70篇
  2013年   67篇
  2012年   112篇
  2011年   82篇
  2010年   54篇
  2009年   54篇
  2008年   55篇
  2007年   38篇
  2006年   48篇
  2005年   40篇
  2004年   41篇
  2003年   23篇
  2002年   35篇
  2001年   6篇
  2000年   4篇
  1999年   9篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1941年   1篇
  1938年   1篇
  1937年   2篇
  1928年   1篇
  1926年   2篇
排序方式: 共有1046条查询结果,搜索用时 303 毫秒
91.
Frataxin is a conserved mitochondrial protein implicated in cellular iron metabolism. Deletion of the yeast frataxin homolog (YFH1) was combined with deletions of MRS3 and MRS4, mitochondrial carrier proteins implicated in iron homeostasis. As previously reported, the Deltayfh1 mutant accumulated iron in mitochondria, whereas the triple mutant (DeltaDeltaDelta) did not. When wild-type, Deltamrs3/4, Deltayfh1, and DeltaDeltaDelta strains were incubated anaerobically, all strains were devoid of heme and protected from iron and oxygen toxicity. The cultures were then shifted to air for a short time (4-5 h) or a longer time (15 h), and the evolving mutant phenotypes were analyzed (heme-dependent growth, total heme, cytochromes, heme proteins, and iron levels). A picture emerges from these data of defective heme formation in the mutants, with a markedly more severe defect in the DeltaDeltaDelta than in the individual Deltamrs3/4 or Deltayfh1 mutants (a "synthetic" defect in the genetic sense). The defect(s) in heme formation could be traced to lack of iron. Using a real time assay of heme biosynthesis, porphyrin precursor and iron were presented to permeabilized cells, and the appearance and disappearance of fluorescent porphyrins were followed. The Mrs3/4p carriers were required for rapid iron transport into mitochondria for heme synthesis, whereas there was also evidence for an alternative slower system. A different role for Yfh1p was observed under conditions of low mitochondrial iron and aerobic growth (revealed in the DeltaDeltaDelta), acting to protect bioavailable iron within mitochondria and to facilitate its use for heme synthesis.  相似文献   
92.
The efficacy of angiotensin-converting enzyme inhibitors (ACEIs) in the treatment of chronic aortic regurgitation (AR) is not well established and remains controversial. The mechanisms by which ACEIs may protect against left-ventricular (LV) volume overload are not well understood, and clinical trials performed until now have yielded conflicting results. This study was therefore performed to assess the effectiveness of two different doses of the ACEI captopril in a rat model of chronic AR. We compared the effects of a 6-month low-dose (LD) (25 mg/kg) or higher dose (HD) (75 mg/kg) treatment with captopril on LV function and hypertrophy in Wistar rats with severe AR. Untreated animals developed LV eccentric hypertrophy and systolic dysfunction. LD treatment did not prevent hypertrophy and provided modest protection against systolic dysfunction. HD treatment preserved LV systolic function and dimensions and tended to slow hypertrophy. The cardiac index remained high and similar among all AR groups, treated or not. Tissue renin-angiotensin system (RAS) analysis revealed that ACE activity was increased in the LVs of AR animals and that only HD treatment significantly decreased angiotensin II receptor mRNA levels. Fibronectin expression was increased in the LV or AR animals, but HD treatment almost completely reversed this increase. The ACE inhibitor captopril was effective at high doses in this model of severe AR. These effects might be related to the modulation of tissue RAS and the control of fibrosis.  相似文献   
93.
The docking protein p130Cas becomes phosphorylated upon cell adhesion to extracellular matrix proteins, and is thought to play an essential role in cell transformation. Cas transmits signals through interactions with the Src-homology 3 (SH3) and Src-homology 2 domains of FAK or v-Crk signaling molecules, or with 14-3-3 protein, as well as phosphatases PTP1B and PTP-PEST. The large (130kDa), multi-domain Cas molecule contains an SH3 domain, a Src-binding domain, a serine-rich protein interaction region, and a C-terminal region that participates in protein interactions implicated in antiestrogen resistance in breast cancer. In this study, as part of a long-term goal to examine the protein interactions of Cas by X-ray crystallography and nuclear magnetic resonance spectroscopy, molecular constructs were designed to express two adjacent domains, the serine-rich domain and the Src-binding domain, that each participate in intermolecular contacts dependent on protein phosphorylation. The protein products are soluble, homogeneous, monodisperse, and highly suitable for structural studies to define the role of Cas in integrin-mediated cell signaling.  相似文献   
94.
Fibroblast growth factor 6 (FGF6) is selectively expressed during muscle development and regeneration. We examined its effect on muscle precursor cells (mpc) by forcing stable FGF6 expression in C2C12 cells in vitro. FGF6 produced in genetically engineered mpc was active, inducing strong morphological changes, altering cell adhesion and compromising their ability to differentiate into myotubes. Expression of MyoD and myogenin, but not of Myf5, was abrogated in FGF6 engineered mpc. These effects were reversed by FGF inhibitors. Ectopic expression of MyoD also restored fiber formation indicating that FGF6 interferes with the myogenic differentiation pathway upstream of MyoD. We also report that in the presence of FGF6, the minor (0.5-2%) subpopulation of cells actively excluding Hoechst 33342 in a verapamil-dependent manner (SP phenotype) was increased to 15-20% and the expression of the mdr1a gene (but not mdr1b) was upregulated by 400-fold. Our data establish a previously undescribed link between FGF6--a muscle specific growth factor--and a multidrug resistance gene expressed in stem cells, and suggest a role for FGF6 in the maintenance of a reserve pool of progenitor cells in the skeletal muscle.  相似文献   
95.
Chemokines participate in the antitumor immune response by regulating the movement and positioning of lymphocytes as well as effector functions and may thus be candidates for use in antitumor therapy. To test whether CCL5, a chemokine involved in the recruitment of a wide spectrum of immunocompetent cells, can control tumor growth, we forced its expression at mouse tumor sites. Tumor growth was reduced in mice with s.c. syngeneic CCL5-EL-4 compared with EL-4-injected mice, whereas both reduced tumor growth and incidence were observed in mice with OVA-expressing EG-7 transfected with CCL5 compared with EG-7-injected mice. Significant antitumor effects were observed soon after intratumoral injection of DNA plasmid coding for chimeric CCL5-Ig. Importantly, quantitative RT-PCR assays showed that the amount of CCL5 expression at the tumor site determined the effectiveness of the antitumor response, which was associated with infiltration of increased numbers of NK, CD4, and CD8 cells at the tumor site. This effect was lost in mice deficient for T/B lymphocytes (RAG-2 knockout) or for CCR5 (CCR5 knockout). Together, these data demonstrate the antitumor activity of intratumoral CCL5 overexpression, due to its recruitment of immunocompetent cells, and the potential usefulness of chimeric CCL5-Ig DNA as an agent in cancer therapy.  相似文献   
96.
97.
98.
Defining how mechanical cues regulate tissue differentiation during skeletal healing can benefit treatment of orthopaedic injuries and may also provide insight into the influence of the mechanical environment on skeletal development. Different global (i.e., organ-level) mechanical loads applied to bone fractures or osteotomies are known to result in different healing outcomes. However, the local stimuli that promote formation of different skeletal tissues have yet to be established. Finite element analyses can estimate local stresses and strains but require many assumptions regarding tissue material properties and boundary conditions. This study used an experimental approach to investigate relationships between the strains experienced by tissues in a mechanically stimulated osteotomy gap and the patterns of tissue differentiation that occur during healing. Strains induced by the applied, global mechanical loads were quantified on the mid-sagittal plane of the callus using digital image correlation. Strain fields were then compared to the distribution of tissue phenotypes, as quantified by histomorphometry, using logistic regression. Significant and consistent associations were found between the strains experienced by a region of the callus and the tissue type present in that region. Specifically, the probability of encountering cartilage increased, and that of encountering woven bone decreased, with increasing octahedral shear strain and, to a lesser extent, maximum principal strain. Volumetric strain was the least consistent predictor of tissue type, although towards the end of the four-week stimulation timecourse, cartilage was associated with increasingly negative volumetric strains. These results indicate that shear strain may be an important regulator of tissue fate during skeletal healing.  相似文献   
99.
The symbiosis between legumes and rhizobia results in the development of a new plant organ, the nodule. A role for polar auxin transport in nodule development in Medicago truncatula has been demonstrated using molecular genetic tools. The expression of a DR5::GUS auxin-responsive promoter in uninoculated M. truncatula roots mirrored that reported in Arabidopsis, and expression of the construct in nodulating roots confirmed results reported in white clover. The localization of a root-specific PIN protein (MtPIN2) in normal roots, developing lateral roots and nodules provided the first evidence that a PIN protein is expressed in nodules. Reduced levels of MtPIN2, MtPIN3, and MtPIN4 mRNAs via RNA interference demonstrated that plants with reduced expression of various MtPINs display a reduced number of nodules. The reported results show that in M. truncatula, PIN proteins play an important role in nodule development, and that nodules and lateral roots share some early auxin responses in common, but they rapidly differentiate with respect to auxin and MtPIN2 protein distribution.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号